Publications
기타논문
Date: 10 May 2022

Journal: International Journal of Molecular Sciences , Doi: https:// doi.org/10.3390/ijms23105292

2022 | Loss of SP-A in <b class="sch_word">the</b> Lung Exacerbates Pulmonary Fibrosis…

Kyunghwa Kim 1 , Dasom Shin 2 , Gaheon Lee 1 and Hyunsu Bae 2,*

첨부파일

Abstract: Idiopathic pulmonary fibrosis (IPF) is a devastating and common chronic lung disease that is pathologically characterized by the destruction of lung architecture and the accumulation of extracellular matrix in the lung. Previous studies have shown an association between lung surfactant protein (SP) and the pathogenesis of IPF, as demonstrated by mutations and the altered expression of SP in patients with IPF. However, the role of SP in the development of lung fibrosis is poorly understood. In this study, the role of surfactant protein A (SP-A) was explored in experimental lung fibrosis induced with a low or high dose of bleomycin (BLM) and CRISPR/Cas9-mediated genetic deletion of SP-A. Our results showed that lung SP-A deficiency in mice promoted the development of fibrotic damage and exacerbated inflammatory responses to the BLM challenge. In vitro experiments with murine lung epithelial LA-4 cells demonstrated that in response to transforming growth factor-β1 (TGF-β1), LA-4 cells had a decreased protein expression of SP-A. Furthermore, exogenous SP administration to LA-4 cells inhibited the TGF-β1-induced upregulation of fibrotic markers. Overall, these findings suggest a novel antifibrotic mechanism of SP-A in the development of lung fibrosis, which indicates the therapeutic potential of the lung SP-A in preventing the development of IPF. 

Keywords: surfactant protein A; pulmonary fibrosis; transforming growth factor-β1; CRISPR/Cas9
  • 페이스북으로 보내기
  • 트위터로 보내기
  • 미투데이로 보내기
  • 구글플러스로 보내기